Noncommutative Riemann Surfaces

نویسندگان

  • Gaetano BERTOLDI
  • José M. ISIDRO
  • Marco MATONE
  • Paolo PASTI
چکیده

We compactify M(atrix) theory on Riemann surfaces Σ with genus g > 1. Following [1], we construct a projective unitary representation of π1(Σ) realized on L (H), with H the upper half–plane. As a first step we introduce a suitably gauged sl2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2–cocycle of the 2nd Hochschild cohomology group. Our construction is the double–scaling limit N → ∞, k → −∞ of the representation considered in the Narasimhan–Seshadri theorem, which represents the higher– genus analog of ’t Hooft’s clock and shift matrices of QCD. The concept of a noncommutative Riemann surface Σθ is introduced as a certain C –algebra. Finally we investigate the Morita equivalence. Contribution to the TMR meeting ”Quantum Aspects of Gauge Theories, Supersymmetry and Unification”, Paris, September 1–7, 1997.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of complex curves and noncommutative geometry I: Riemann surfaces and dimension groups

This paper is a brief account of the moduli of complex curves from the perspective of noncommutative geometry. We focus on the uniformization of Riemann surfaces by the ordered K-groups of a noncommutative C-algebra. Using this approach, we prove “generic” arithmeticity of the mapping class group and study correspondences between complex and noncommutative tori.

متن کامل

Moduli of complex curves and noncommutative geometry: Riemann surfaces and dimension groups

This paper is a brief account of the moduli of complex curves from the perspective of noncommutative geometry. Using a uniformization of Riemann surfaces by the ordered abelian groups, we prove that modulo the Torelli group, the mapping class group of surface of genus g with n holes, is linear arithmetic group of rank 6g − 6 + 2n.

متن کامل

On a Teichmüller functor between the categories of complex and noncommutative tori

A covariant functor from category of complex tori to the category of noncommutative tori is constructed. The functor maps isomorphic complex tori to the Morita equivalent noncommutative tori. Our construction is based on the Teichmüller theory of Riemann surfaces.

متن کامل

On complex and noncommutative tori

The “noncommutative geometry” of complex algebraic curves is studied. As first step, we clarify a morphism between elliptic curves, or complex tori, and C-algebras Tθ = {u, v | vu = e2πiθuv}, or noncommutative tori. The main result says that under the morphism isomorphic elliptic curves map to the Morita equivalent noncommutative tori. Our approach is based on the rigidity of the length spectra...

متن کامل

Quantum Teichmüller Space

We describe explicitly a noncommutative deformation of the *-algebra of functions on the Teichmüller space of Riemann surfaces with holes equivariant w.r.t. the mapping class group action.

متن کامل

D-branes and Bivariant K-theory

We review various aspects of the topological classification of D-brane charges in K-theory, focusing on techniques from geometric K-homology and Kasparov’s KK-theory. The latter formulation enables an elaborate description of D-brane charge on large classes of noncommutative spaces, and a refined characterization of open string T-duality in terms of correspondences and KK-equivalence. The examp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000